Neutrino Oscillation Parameters in a Six-Channel Reduced Rank See-Saw

G. J. Stephenson, Jr. (UNM)

T. Goldman (LANL)

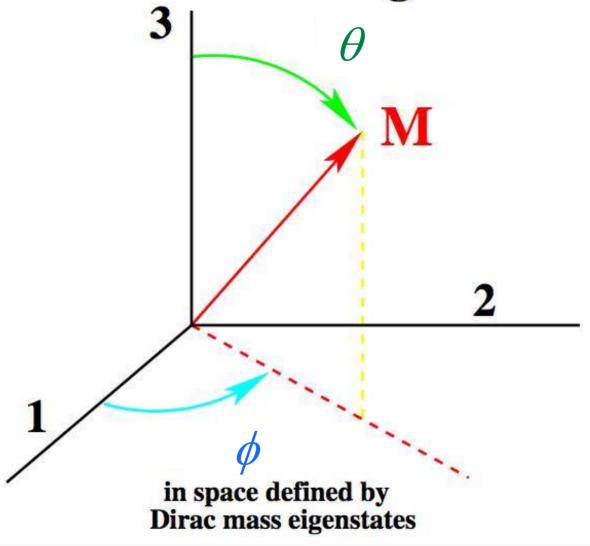
B.H.J. McKellar (Melbourne)

Based on "3+2 neutrinos in a see-saw variation",

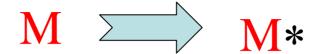
G.J. Stephenson, Jr., T. Goldman, B.H.J. McKellar and M. Garbutt, to appear in *IJMPA*

[hep-ph/0404015]

3 Flavor, Rank 1 Sterile Mass Matrix


Diagonal Dirac mass matrix defines "sterile flavors"

0	0	0	m_1	0	0
0	0	0	0	m_2	0
0	0	0	0	0	m_3
m_1	0	0	0	0	0
0	m_2	0	0	0	0
0	0	m_3	0	0	M

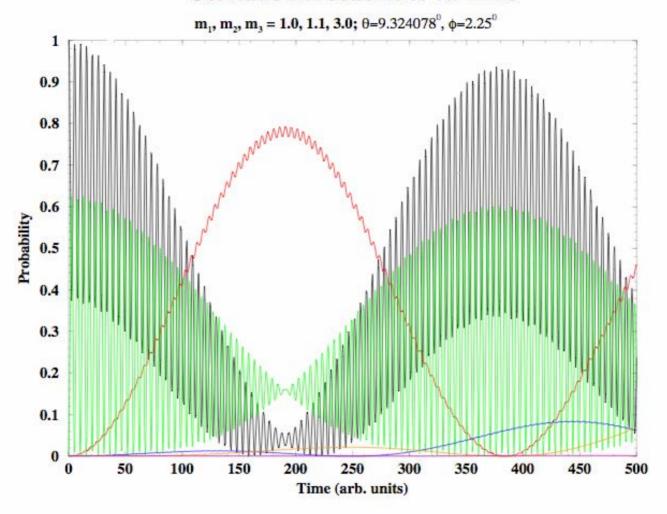

v_{af}
v_{ag}
v_{ah}
$v_{\sf sf}$
$v_{\sf sg}$
$v_{\sf sh}$

Direction of Single Massive Sterile Eigenstate

$\cos^2 \phi \sin^2 \theta$	cos <i>ø</i> sin <i>ø</i> sin² <i>θ</i>	cos <i>φ</i> sin <i>θ</i> cos <i>θ</i>
$\cos \phi \sin \phi \sin^2 \theta$	sin²¢sin²∂	sin <i>∲</i> sin <i>⊕</i> cos <i>⊕</i>
$\cos \phi \sin \theta \cos \theta$	sin <i>∲</i> sin <i>⊕</i> cos <i>⊕</i>	$\cos^2\theta$

Small angles ϕ , θ for misalignment of sterile and active flavors nonetheless induce large mixing!

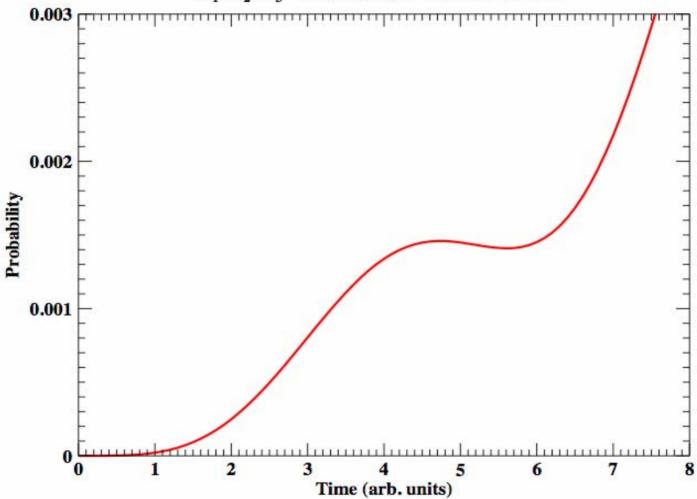
OscillationProbabilities vs. Time


 $\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3} = 1.0, 1.1, 3.0; \theta = 9.324078^{\circ}, \phi = 2.25^{\circ}$ active 1 0.9 0.8 sterile 1 0.7 0.6 Probability 0.5 0.4 0.3 0.2 0.1 200 400 600 800 1000 1200 1400 1600 1800 2000

Large mixing amplitudes to all channels on multiple scales

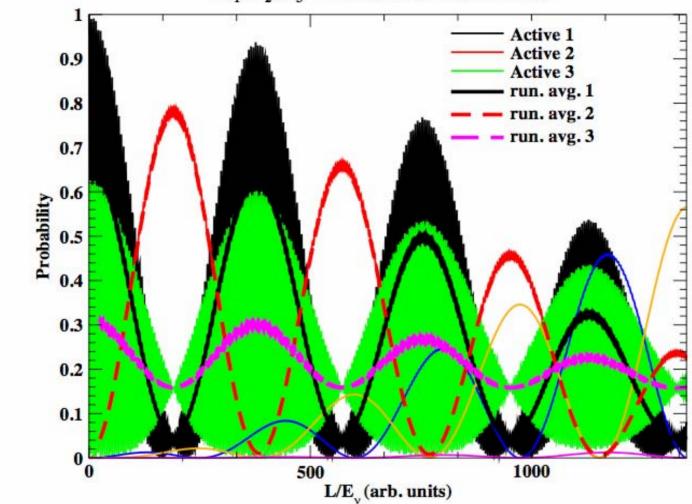
Time (arb. units)

Oscillation Probabilities vs. Time



Variation near source

Oscillation Appearance Probability vs. Time $m_1, m_2, m_3 = 1.0, 1.1, 3.0; \theta=9.324078^0, \phi=2.25^0$



Note probability scale for appearance

Oscillation Probabilities vs. Time $m_1, m_2, m_3 = 1.0, 1.1, 3.0; \theta = 9.324^{\circ}, \phi = 2.25^{\circ}$

Effects of finite resolution

Add CKM (yes, same as quarks) mixing in actives

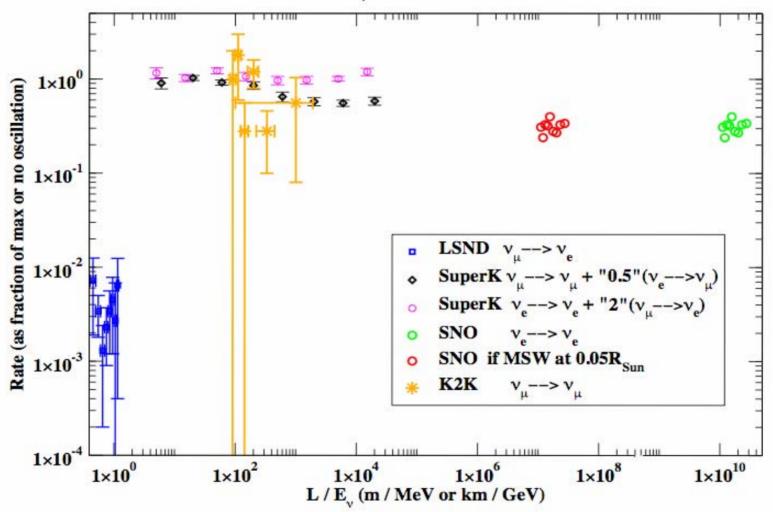
m_1	0	0
0	m_2	0
0	0	m_3

[Ignoring CPV]

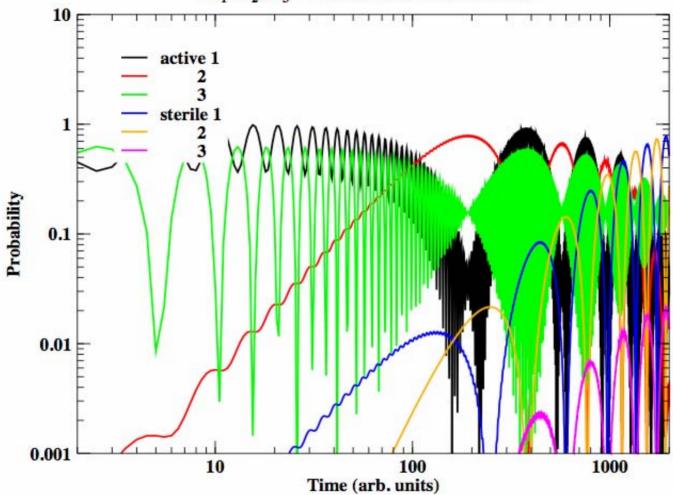
U_{11}	U ₂₁	U ₃₁
U ₁₂	U ₂₂	U ₃₂
U ₁₃	U ₂₃	U ₃₃

m_1	0	0
0	m_2	0
0	0	m_3

U ₁₁	U ₁₂	U ₁₃
U ₂₁	U ₂₂	U ₂₃
U ₃₁	U ₃₂	U ₃₃

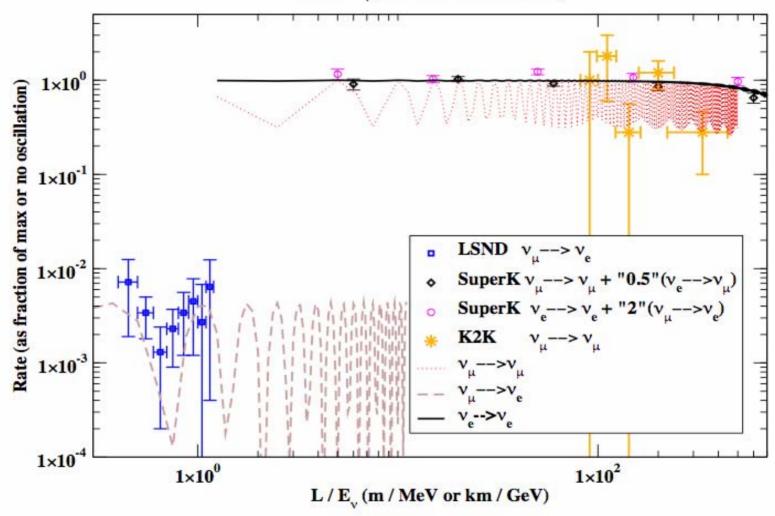

Without CKM, L/E scale mismatch for LSND effect **7**Transition probability decreases when L/E scale is adjusted to fit atmospheric Adding CKM restores probability for ν_{e} appearance without further L/E scale change

Neutrino Appearance and Disappearance Rates


vs. L/E_v (m/MeV or km/GeV)

Data in L/E form

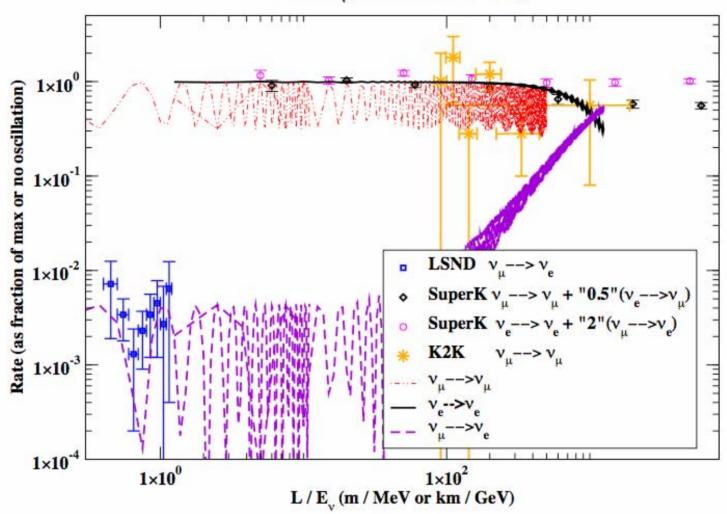
OscillationProbabilities ys. Time $m_1, m_2, m_3 = 1.0, 1.1, 3.0; \theta=9.324, \phi=2.25$



Non-CKM results on Log-Log plot as for data

Neutrino Appearance and Disappearance Rates

vs. L/E, (m/MeV or km/GeV)



Including CKM revives V_e appearance rate

Neutrino Appearance and Disappearance Rates

vs. L/E (m/MeV or km/GeV)

Mixing still large -- but too soon?

Remaining questions:

- **7**Wolfenstein effect on v_e through Earth?
- **7**Further extend scale for v_{μ} disappearance?
- Analyze Solar v's with multichannel MSW

CONCLUSIONS

- 1. Sterile and Dirac CKM/MNS angles raise questions re conventional analyses limited in channels
- 2. Reliable data analysis requires having L/E distributions to avoid two-channel biases.

